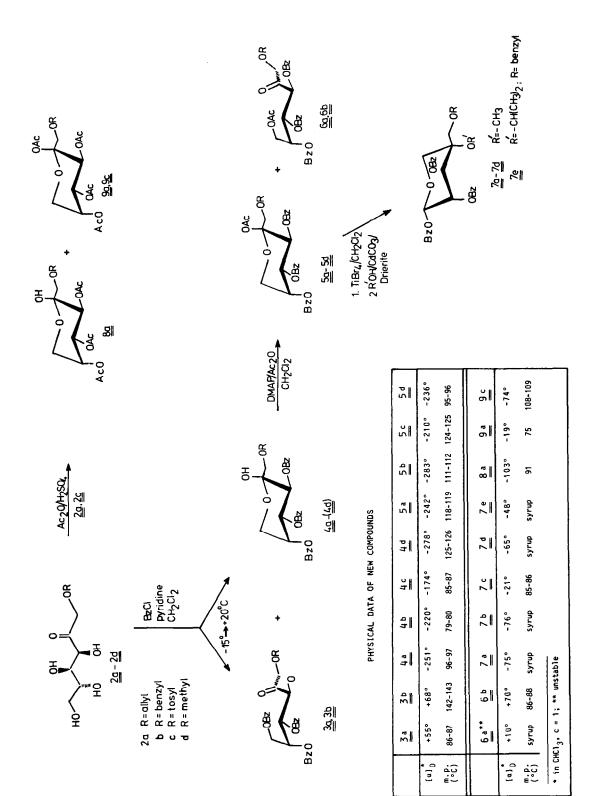
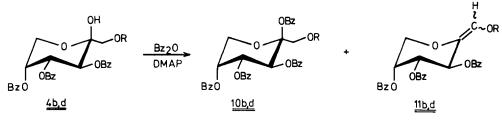

DISTRIBUTION OF TAUTOMERS IN ACYLATED KETOSES AN IMPORTANT FACTOR IN KETOSIDE SYNTHESIS¹⁾

B. Kraska* and R. Lichtel

Institut für Organische Chemie u. Biochemie, TH Darmstadt Petersenstr. 22, D-6100 Darmstadt, FRG


Summary: Formation of tautomers upon acylation of D-fructose and several 1-O-substituted derivatives thereof is studied and appropriate intermediates are used in stereo-selective glycoside synthesis.

The inherent tendency of D-fructose to form open-chain derivatives²⁾ is of considerable preparative significance. Both the synthetic potential in the construction of the chiral skeleton of eminent natural products³⁾ and the use in ketoside synthesis⁴⁾ strongly depend on the assistance of functional groups in stabilizing the required tautomer. To this end, we have studied the effect of C-1-OH group substituents on the distribution of tautomers formed during acylation of fructose. This investigation necessitated the reevaluation by spectroscopic means (¹H-, ¹³C-nmr) of early reports⁵⁾ concerning the spectrum of products obtained during benzoylation of D-fructose itself. In the presence of benzoylchloride/pyridine/chloroform at low to ambient temperatures (-15° - +20°C), a mixture of partially or fully acylated derivatives has been obtained.


In addition to the known⁵ benzoates $\underline{1a}$, $\underline{1d}$ and $\underline{1e}$, separated by LC (CCl₄/EtOAc 5:1, silicagel) a crystalline pentabenzoate $\underline{1b}$ ([α]_D = -212°, CHCl₃, m.p. 152-153° C) and a furanose perbenzoate $\underline{1f}$ ([α]_D = +9°, CHCl₃) have been isolated. Both products are independently obtained either by selective benzoylation of $\underline{1a}$ or $\underline{1e}$, respectively using DMAP/Bz₂0⁶) in CH₂Cl₂ or, in the case of $\underline{1b}$, by reacting glycosyl-bromide⁷) $\underline{1c}$ with silverbenzoate in benzene (82%) or p-dioxane (70%)⁸.

Quite different, preponderant formation of even more versatile keto-derivatives together with a high proportion of conveniently blocked pyranose tautomers is observed when submitting 1-0-ally1⁹⁾- or -benzylethers¹⁰⁾ $\underline{2a}$, $\underline{2b}$ of D-fructose to the aforementioned benzoylation conditions. Conventional work-up and flash-chromatography yielded mainly spontaneously crystallizing fractions of the new 1-0-X-3,4,5-tri-0-benzoylpyranoses (X = ally1-, benzyl-) $\underline{4a}$, $\underline{4b}$ and

the corresponding 2-keto-3,4,5,6-tetrabenzoates <u>3a</u>, <u>3b</u>. Increasing amounts of fully characterized furanose-forms have been isolated with rising reaction temperature. - Interestingly, when benzoylating 1-0-methyl-fructose 11 , all attempts to isolate the open-chain derivative 4d failed. It was obtained instead by subsequent hydrogenolysis (Pd/C/EtOH) and etherification (CH_3I/Ag_20) of 4b. Thus, contrary to the observed effect of other electron-donating substituents, introduction of the methyl group at C-1-OH favours formation of cyclic tautomers as effectively as do electron-withdrawing groups at this position. We could show 1-0-mesyland -tosyl-groups to stabilize preferentially furanose- and pyranose-forms. Nearly exclusive formation of cyclic (pyranose) tautomers is observed, when the acylation is performed in strongly acidic media $(Ac_20/H_2SO_4)^{12}$ e.g. conversion of $2a_1$, $2c_2$ ----> $8a_1$, $2a_2$, $2a_3$, $2a_4$, $2a_5$ These conditions, however, are not generally feasible for temporary blocking-groups. Competition between open-chain ($\underline{6a}$, $\underline{6b}$) and pyranose tautomers ($\underline{5a}$, $\underline{5b}$) also occurs during acetylation of pyranoid 2-OH-benzoates such as 4a, 4b required for subsequent transformation of the latter into glycosyl-halides and further into ketosides. Short exposure(4ab) to DMAP/ Ac_2O/Et_3N at 20° C in CH_2Cl_2 afforded mainly (70 - 80 %) highly crystalline 2-keto-6-0-acetyl-derivatives <u>6a</u>, <u>6b</u>, whereas heating with NaOAc/Ac₂O mixtures¹³⁾ gave nearly 1:1 ratios of these compounds and the desired 2-0-acety1-3,4,5-tri-0-benzoy1-pyranoses 5a, 5b. Prolonged reaction of $4\underline{a}$ or $4\underline{b}$ with DMAP under the same conditions surprisingly leads in high yield (80 - 85 %) to the pyranoid tautomers preferentially. Accordingly, a longer reaction in the presence of NaOAc/Ac₂O likewise favours the pyranose form, though with concurrent degradation of the saccharides. The overall reaction may be interpreted in terms of an equilibrium between open-chain and pyranose-form and the preferential formation of the latter under thermodynamically controlled conditions. The apparent ease of equilibration possibly allows to exchange the C-6-substituent of acyclic derivatives like <u>6a</u> or <u>6b</u> against other nucleophiles. We are currently investigating the scope of this valuable method for grafting additional functional groups onto the sugar backbone.

Unlike acetylation, benzoylation of e.g. $\underline{4\underline{b}}$, $\underline{20/CH_2Cl_2}$ mainly affords the cyclic tetrabenzoates $\underline{10\underline{b}}$ (65 %) and $\underline{10\underline{d}}$ (62 %), which tend to eliminate benzoic acid with formation of exocyclic enol-ethers ($\underline{11\underline{b}}$, $\underline{11\underline{d}}$) as E/Z mixtures.

Attempts to purify the perbenzoates by column-chromatography (silicagel, $CH_2Cl_2/EtOAc$ 20:1) only increases the yield of olefins. The reduced stability of these molecules compared with the acetates is clearly a consequence of a better leaving group at the anomeric center and not without precedent in ketose chemistry¹⁴).

Conversion of the acetates $\underline{5a} - \underline{5d}$ into the bromides (1,5 eq TiBr₄/anhydr. CH₂Cl₂, 20° C, 3h) and subsequent solvolyses (MeOH, IprOH/CdCO₃/drierite) afforded a series of hitherto unknown alkyl- α -D-fructosides in ca. 85 % yield and remarkably high stereoselectivity (α : β = 20:1).

In the case of glycosides $\underline{7a}, \underline{b}, \underline{d}$, problems associated with reactions at the anomeric center have been successfully circumvented by direct glycosidation using methanol/triflate mixtures as additional method¹⁵⁾. Due to the non-participating blocking groups at C-1-OH, concurrent orthoester formation characteristic of earlier syntheses of α -D-fructopyranosides¹⁶⁾ is avoided. All new glycosides have been fully characterized and, by ¹H-nmr (300 MHz), are shown to adopt a near to ${}^{5}C_{2}$ chair-conformation with a quasi axial anomeric substituent and equatorially oriented primary hydroxylgroup. - We are currently extending our efforts to the synthesis of ketose-derived di- and oligosaccharides.

<u>Acknowledgement:</u> Miss B. Schifferdecker is thanked for skilled experimental assistance. Generous financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Footnotes and References

- 1. Presented in part XI^e Journees des Glucides, Paris 5.-7.7.1982.
- 2. S. Angyal, G.S. Bethell, D.E. Cowley, and V.A. Pickles, Austr. J. Chem. 29, 1239 (1976).
- 3. L. Banfi, M.G. Beretta, L. Colombo, C. Gennari, and C. Scolastico, J. Chem. Soc., Chem. Commun. 1982, 488.
- 4. L.M.J. Verstraeten, Adv. Carbohydr. Chem. 22, 229 (1967).
- 5. P. Brigl and W. Schinle, Ber. Dtsch. Chem. Ges. 66, 325 (1933); ibid 67, 127 (1934).

Though the reliability of the author's data is high, additional structural proof for the "2-keto-pentabenzoate" $\underline{1d}$ is provided by H-nmr (300 MHz; CDCL): $\delta = 4.55$ and 4.96 (2x dd, H-6,6'); 5.17 (m, H-1,1'); 5.98 (ddd, H-5); 6.04 (d, H-3); 6.42 (dd, H-4). The new pyranose pentabenzoate $\underline{1b}$ has: $\delta = 4.26$ and 4.32 (2x dd, H-6,6'); 4.81 and 5.56 (2x d, H-1,1'); 5.87 (m, H-5); $\overline{6.04}$ (dd, H-4); 6.51 (d, H-3).

- 6. G. Höfle, W. Steglich, and H. Vorbrüggen, Angew. Chem. Int. Ed. Engl. 17, 569 (1978).
- 7. R.K. Ness and H.G. Fletcher, jr., J. Am. Chem. Soc. 75, 2619 (1953).
- Under these conditions, no change of configuration at the anomeric center (β-D -> α-D) is observed; such an inversion occurs, however, with AgOAc/Ac₂O at 60°C: R. Lichtel, Diplomarbeit, TH Darmstadt 1978; cf. ref. 13.
- 9. 2a (syrup, [a] = -23°, p-dioxane) has been obtained via etherification (NaH, allylbromide toluene, 80°C, 24 h) of known [H. Ohle and G. Berend, Ber. Dtsch. Chem. Ges. 60, 1159 (1927)] 2,3-4,5-di-O-isopropylidene-B-D-fructopyranose and subsequent hydrolysis (0.1 N H₂SO₄/100°C/2 h) of the resulting oil ([a] = -32°, CHCl₃).
- 10. 2b has been prepared similarly from the known di-acetone-derivative [A. Klemer, G. Rodemeyer, and F. Linnenbaum, Chem. Ber. <u>109</u>, 2849 (1976)] as a syrup, ([α]_D = -25° in EtOH).
- 11. H. Ohle, Ber. Dtsch. Chem. Ges. 58, 2577 (1925).
- 12. F. Micheel and L. Tork, Chem. Ber. 93, 1013 (1960).
- 13. H. Paulsen, K. Heyns, and H. Köster, Chem. Ber. 100, 2669 (1967).
- K. Tokuyama, E. Tsujino, and M. Kiyokawa, Bull. Chem. Soc. Jpn. <u>33</u>, 1344 (1965); R.K. Ness and H.G. Fletcher, jr., J. Org. Chem. <u>33</u>, 181 (1968); P. Köll, E. Steinweg, J. Metzger, and B. Meyer, Liebigs Ann. Chem. <u>1982</u>, 1052.
- 15. A.A. Pavia, J.-M. Rocheville, and S.N. Ung, Carbohydr. Res. 79, 79 (1980).
- E. Pacsu, J. Am. Chem. Soc. <u>57</u>, 745 (1935); H. Steinlin, L. Camarda, and A. Vasella, Helv. Chim. Acta 62, 378 (1979).

(Received in Germany 29 October 1982)